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This paper develops the use of matrix reduction techniques to simplify and stabilize the 

solutions to various optimization problems. 

 

 

 

1.1 Matrix Reduction 
 

Matrix  reduction  approximates a matrix by removing some terms in its decomposition. 

Suppose that a matrix M can be expressed as asummation of matrices Mi as 
 

k 

M=
')'

Mi=M1+···+Mk. 
i=1 

 

This kind of expansion i scommon in matrix computation. For instance, any matrix 
 

A∈R m×n has singular value decomposition(SVD).  
 

 

 

A=USVT, 
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Where U∈Rm×m and V∈Rn×n  are orthogonal matrices, and S ∈Rm×n is adiagonal 
 

 

matrix. We can write this decomposition assumption of rank one matrices 
 

min(m,n) 

A= 
')'

 
i=1 

 

siuiv
T, 

 

wher eui andv I are the i-th columns of U and V, and si is the i-th diagonal element of S. 
 

If a matrix B∈Rm×m is symmetri can dpositive  definite, Cholesky  decomposition 
 

 

Also generates such an expansion as 
 

m 

B=LLT =
')'

lil
T, 

i=1 
 

where L is a lower triangular matrix, and li is the i-th column of L. This expansion is 

particularly important when B is updated by alow-rank correction since this can be 

accomplished by adding a small number of terms to the expression. 

Broadly speaking, there are two different approaches to matrix reduction. First, if 
 

We know that only the first�       k matrices Mi are important to us, we can constructa reduced 
 

Matrix M     as: 
 

 

 
k 

M�=
')'

Mi=M1+···+M. 
i=1 

 

This reduction metho discalled truncation.Alternatively, we can apply afiltering factor 
 

φi∈[0,1]to each matrix Mi for i=1,...,k.Then,there duced matrix M� becomes 
 

k 

M� =
')'

φiMi=φ1M1+···+φkMk. 
i=1 

 

This filtering-based reduction can be regarded as a generalized version of truncation since 

truncation is a special case with φi∈{0,1}.Both reduction methods are used in many 

applications such as regularization of ill-posed problems and factor analysis.
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We can also classify the matrix reduction approaches as build-down and build-up, depending 

on whether were moves one terms in a given matrix expansion or we construct the reduced 

matrix by adding terms until acertain goal is achieved. For example, while 

A complete matrix M is given to us in the problems of regression and factor analysis,we 
 

Construct  M By adding matrices Mi in constrained convex optimization. 
 

The purposes of the matrix reduction are very different depending on particular problems. 

First,in regression problems in statistics,the trun cated or filtered terms are considered to 

benoiseor observation error, so matrix reduction purifies the given raw data. 

This can be use fulinsolving least squares problems for an over-determined linear system or 

regularizing the solutiontoan ill-posed problem.  Second,infact or analysis and principal 

component analysis(PCA), there duced parts are regarded as idiosyncratic 

(unsystematic)factors,which are not shared by multiple variables in common. Third, in 

constrained convex optimization p r o b l e m s , there duced terms might correspond to 

unnecessary(inactive)constraints, which do not make significant contributions to the search for 

an optimal solution. So,we expect a benefit of decreased computational cost by using matrix 

reduction. 

When ever matrix reduction is applied, it is a very critical but difficult issue to decide how 

much to reduce the matrix. This important decision determines both the quality of there duced 

matrix and that of the final result. If were duce too much, we may fail to solve the problem. 

On the other hand,if we reduce too little,we can not expect enough benefit from there duction. 

It is a difficult decision because criteria for there duction must be tailored to the problem and 

the circumstances.For example, in regularization of ill- 
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i=1 x

i=1

 

σmax(X) The largest singular value of X 
σmin(X) The smallestsingularvalueofXσi(X)
 Thei-thlargestsingularvalueofX 
x=

√
xTx 2-normforavectorx 

X2=σmax(X) 2-normforamatrixX 

XF =
m

 
n 2 
j=1ij Frobeniusnormfora matrixX∈Rm×n 

tr(X)=n
 xii TraceofmatrixX∈Rn×n 

Ip Anidentitymatrixofdimensionp 
 

 

 

Posed problems,the criteria may change based on which distribution the embed ded noise 

follows,or how then oise indifferent variables is correlated.Because of this difficulty, the 

criteria for constraint reduction have been studied in a variety of applications. 

In this dissertation,we discuss matrix reduction in three numerical optimization problems.Our 

study focuses on how we can determine appropriate reduction intensity for successful matrix 

reduction in these problems.We introduce the problems in the next section. 

In addition, a few basic statistical definitions are frequently used.When a continuous random 

variable x has aprobability density function px(x), the expected valueE(x)is defined as 

 

 

E(x)= 
∞ 

xpx 

 

(x). 
−∞ 

 

Then,the varianc eva r(x)and thest and arddeviationstd(x)are defined as 
 

var(x)  = E
(
(x−E(x))2)=E(x2)−(E(x))2 , 

 

std(x)  = 
/

var(x). 
 

 

For  two random variables x and y,the co variance co v(x,y)and the correlation co rr(x,y) 
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Are defined as 
 

 

cov(x,y)  = E((x−E(x))(y−E(y))) =E(xy)−E(x)E(y), 
 

cov(x,y) 
corr(x,y)  = 

std(x)std(y)
. 

 

 

 

 

 

 

 

1.2 Overview of Numerical Optimization Problems 
1.2.1 Total Least Squares Problems 

 

 

Suppose that we have an under lying linear model, 
 

 

(A−EA)X=(B−EB), 
 

 

Where EA and EB are unknown; they result from noise in the observed matrices A∈Rm×n 
 

And B∈Rm×d. To estimate the parameters X, we construct a minimization problem 
 

 

min 
X,∆A,∆B 

[∆A,∆B]F, 
 

 

Subject to 
 

 

(A−∆A)X=(B−∆B), 
 

Rank ([(A−∆A),(B−∆B)])=r, 
 

 

Where r is the known rank of the noise-free data(A−EA). 
 

The minimization problem above can be solved by matrix reduction on the SVD of 
 

 

[A,B].If there we re no noise in A and B,the concatenated matrix[A,B]would also have 
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Rank r since Range (B)⊆Range(A). If the rank r of the noise-free data (A−EA) is 
 

Given to us,we can truncateall butther largest singular values of [A,B].By the Eckart- Young-

Mirsky Theorem , the resulting (X,∆A,∆B) is the solution to the minimization problem. In 

addition, if the noise matrices EA and EB are mutually uncorrelated and have zero mean and 

identical standard deviations, it is known that the minimization problem 

Above gives us a consistent estimate X for th eunder lying linear model. 

Our study starts from the question of how we can estimate X if we do not know the rank r or 

if the embed ded noise matrices EA and EB do not have identical standard deviations and the 

standard deviations are unknown. If the rankr is not given to us, we need to decide how many 

singular values to truncate. If the standard deviations of the 
 

Noise are different and we do not know their values, we also need to find an appropriate 

weight α so that weighted data αA and (1−α) B contain noise with identical standard 

deviations. 

In this paper the author propose a method to estimate the rank r and the weight α.We also 

present experimental results to evaluate the proposed method. 

 

 

1.2.2 Covariance Matrix Estimation 
 

In financial portfolio theory, Mark owitz proposed the Mean-Variance(MV) portfolio problem 

to find an optimal portfolio of N stocks satisfying given constraints.The MV portfolio problem 

requires an estimated covariance matrix Σ∈RN×Nfor the N stock 
 

 

returns. It is well known that the performance of the portfolio is very sensitive to the quality of 

the covariance matrix estimate,but a conventional sample covariance matrix is 
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i

 

far from a good estimate. 
 

 

The main difficulty is that the observed stock return data contain too much noise. Matrix 

reduction can be used to reduce the error in the covariance matrix estimate .  

Suppose that we have stock return data R∈ RN×T of N stocks for T time periods. For 

 

 

Appropriate principal component analysis (PCA), we normalize each stock return, so that 

larger turn values for a few stocks do not over whelm the other return values. Let Z de- note 

the normalized data with zero-means and identical standard deviations. From the 

Singular value decomposition of Z,we have 
 

T 

Z=USVT =UF=
')'

uif
T, 

i=1 

 

where F=SVT,ui is the i- th column of U, and fT
 

 

 

 

is the i-th row of F. In PCA, the 
 

vector fi is called the i-th principal component affecting the stock returns, and the vector ui Is 

called a load which determines how much each stock return is affected by the i-th component. 

Previously, many people proposed truncating a few smallest singular values, 

expecting that the principal components corresponding to the smallest singular values are 

more significantly contaminated by noise. However, no one has given a clear answer as to how 

many principal components should be truncated. This is a very difficult decision because we 

fundamentally do not know how many factors govern the stock returns. 

In Chapter 3,we applya Tikhonov filtering function to the principal components, a 

monotonically increasing function of the singular value. With this smooth filtering, we expect 

that the influence of important principal components is amplified while potential information 

in less important principal components Is still preserved. Further more, we 
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Propose a method to determine filtering intensity. Experiments using stock return data in 

NYSE,AMEX, and NASDA Q from 1958 to 2007, show that the MV portfolio using Tikhonov 

filtered co variance matrix performs quite well. 

 

 

1.2.3 Interior Point Method for Semi definite Programming 
 

 

The constrained convex optimization problem known as semi definite programming (SDP) 
 

 

Has the following primal and dual problems: 
 

 

Primal SDP: min C•X s.t.Ai•X=bifori=1,...,m, XC0, 
 

 

Dual SDP: max bTy s.t. 
y 

 

m ')'
yiAi+Z=C, ZC0, 

i=1 

 

where C,Ai,X, and Z are n×n symmetric matrices, C•X=tr (CX) is the trace of the 
 

matrix, and Z C0 means that Z is positive semi definite. 
 

 

In an interior point method (IPM) for solving the SDP, we use Newton’s method to find a 

direction (∆X,∆y,∆Z) leading toward an optimal solution and following a central path 

defined by the primal and dual constraints and complementarity equation.To make the 

computation of the direction efficient , the Newtone quations are reduced to the linear system, 

M∆y=g, 
 

 

Where the Schur complement matrix M is determined by the constraint matrices Ai and the 

current point (X,Z), and g is defined by current residuals.The IPM repeated ly solves this 

reduced equation until the it erates atisfies a given convergence  tolerance. 

It takes O (mn3+m2n2) operations to compute M, which is most expensive part 
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For each it eration, so we can expect benefit by reducing its computational cost. In many 

applications of SDP such as the binary code problem, the quadratic assignment problem, and the 

traveling sales man problem, the matrices Ai and C have identical diagonal block 

structure. Using the block structure, M can be expanded to 
 

p 

M=
')'

Mj, 
j=1 

 

where pisthe number of diagonal blocks and matrix Mj is associated with the j-th con- straint 

block. If some constraint blocks make in significant or detrimental contributions to finding these 

arch direction, we may be able to ignore the corresponding Mj when we compute M.  We call 

such block s in active. Similar to the previous problems, it is critical to determine which 

constraint blocks can be ignored while still guaranteeing that the it eration converges to the 

optimal solution. 

The author explain how constrain treduction can be applied to IPM for SDP problems and 

propose a basic predictor-correct or algorithm with constraint reduction. We demonstrate its 

performance by experiments with test problems. The author develops a new predictor-correct or 

algorithm with adaptive criteria to determine inactive constraint blocks. We verify the 

correctness softhe criteria by proving the global convergence of the proposed algorithm. Its 

polynomial complex it y is also verified to be O(nln(ǫ0/ǫ)), where 

ǫ0 is an initial residual and ǫ is a required tolerance. 
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