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MATRIX REDUCTION IN NUMERICAL OPTIMIZATION

MoHamMMAD Navaz RAsoULIZADEH*
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This paper develops the use of matrix reductiohrigpies to simplify and stabilize the

solutions to various optimization problems.

1.1 Matrix Reduction

Matrix reductionapproximates matrix by removing sonterms in its decomposition.

Suppose that a matrM can beexpressed assammation of matricell; as

l)l k
M= Mi:Ml+"'+Mk.
i=1

This kind of expansion isommon in matrix computatiofor instance, angatrix

AER ™M hassingularvalue decomposition(SVD).

A=USV',
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MATRIX REDUCTION IN NUMERICAL OPTIMIZATION

WhereUER™ ™M andVER™" are orthogonal matrices, aBd=R™ " is adiagonal

matrix. We can writéhis decomposition assumption of rank one matrices

mingn,n)

i=1

T

A SiUiV';

wher aJ; and/ | are the-th columns ofU andV, ands; is thei-th diagonal element &.

If a matrixBER™ ™ is symmetri can dpositive definite, Cholesky daposition

Also generates such an expansion as
m l)l
B=LL™=" Il
i=1
where L is a lower triangular matrix, anfj is the i-th column of L. This expansion is

particularly important whenB is updated by alow-rank correction since this can b

accomplished by adding a small number of termbecekpression.
Broadly speaking, there are two differapproaches to matriseduction. First, if
We know that only the firﬁtmatricesl\/li are important to us, we can constructa reduced

Matrix M as:

k o'y
W=~ Mi=M++M.

i=1
This reduction metho discalléclincation.Alternatively, we can apply afilterinfigctor
¢i€[0,1]to each matriM; for i=1,...,k.Then,there duced matrift becomes

N K
=" giMi=p1M 1+ +@M.
i=1

This filtering-basedreduction can be regarded as a generalized veddidruncation since
truncation is a special casavith ¢;€{0,1}.Both reduction methods are used in many

applications such as regularization of ill-posed problems and factor analysis.
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RASOULIZADEH

We can also classify the matrix reductiapproachess build-down andbuild-up, depending
on whether were moves one terms in a given makpaesionor we construct the reduced
matrix by addingermsuntil acertain goal is achieved. For example, while

A complete matrixM is given to us in the problems of regression actbfaanalysis,we
ConstructM By adding matrice®; in constrained convex optimization.

The purposes of the matrix reduction are very hfié depending on particular problems.
First,in regression problems in statistibe, trun cated or filtered terms are considered to
benoiseor observation error, so matrix reductionifies the given raw data.

This can be use fulinsolving least squares probliEeman over-determined linear systamn
regularizing the solutiontm ill-posed problem. Second,infact or analysisl @mincipal
component analysis(PCA), there duced parts are rdeda as idiosyncratic
(unsystematic)factors,which are not shared by leltivariables in common. Third, in
constrained convex optimization problems, thereeduderms might correspond to
unnecessary(inactive)constraints, which do not nsadgeificant contributions tthe searchfor
an optimal solution. So,we expect a benefide€reasedomputational cost bysing matrix
reduction.

When evematrix reduction is applied, it is a very critidadit difficult issueto decidehow
much to reduce the matrix. Thimportantdecision determindsoththe quality of there duced
matrix andthat ofthe final result. If were duce too mualie may failto solve the problem.
On the other hand,if we reduce too little,we cahexpect enougbenefitfrom there duction.
It is adifficult decision because criterdar there duction must biilored to the problem and

the circumstancesor example, irregularization of ill-
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MATRIX REDUCTION IN NUMERICAL OPTIMIZATION

Omax(X) The largest singular value ¥f
Omin(X) The smallestsingularvalueéd;(X)
e-thlargestsingularvalue

N o Thei-thl tsingul luef
X= XX 2-normforavector
Xo=0max(X) 2-normforamatrix
Xg=" i—1j=1ij X° Frobeniusnormfora matikeR™ "
tr(X)=" i—1 Xii TraceofmatriX ER™ "
I Anidentitymatrixofdimensiop

Posed problemthe criteria may change based on which distributioen embed ded noise
follows,or how then oise different variablesis correlatedBecause ofthis difficulty, the
criteria for constraint reduction have been studea variety of applications.

In this dissertatiorwe discuss matrix reduction in three numericalroiation problems.Our
study focuses on how we can determine appropréatection intensity fosuccessfumatrix
reduction in these problems.Weroducethe problems in the next section.

In addition, a few basic statisticdéfinitionsare frequently used.When a continuous random

variablex has aprobability density functigy(x), the expected vall£x)is defined as

E()=xpx  (X).
Then,the varianc evéx)and thest and arddeviationétfare defined as
( )
var(x) = E (x—E(x))* =E(x)—(E(X))",

/
stdx) =  vanx).

For two random variablesandy,the co variance ca(x,y)and the correlation co(x,y)
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Are defined as

cov(x,y) = E((x—E())Y—E(y))) =E(xy)—EX)E(y),

~ cov(x,y)
corr(x,y) = stdx)stdy)’

1.2 Overview of Numerical Optimization Problems
1.2.1 Total Least Squares Problems

Suppose that we have an under lying linear model,
(A—EA)X=(B—Ep),

WhereE, andEg are unknown; they result from noise in thteservednatricesAER™*"

And BER™ 4, To estimate thparameter¥, we construct a minimization problem
min
x,AAI,AB [AAABJE,
Subject to

(A—AA)X=(B—AB),

Rank([(A—AA),(B—AB)])=r,

Wherer is theknownrank of the noise-free dda—E.).
The minimization problem above can be solved byimatduction orthe SVD of

[A,B].If there we re no noise ik andB,the concatenated matiB]would also have
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MATRIX REDUCTION IN NUMERICAL OPTIMIZATION

Rankr sinceRange(B)SRangd€A). If the rankr of the noise-free daf@®—E,) is

Given to us,we can truncaiébuther largest singular valuesf [A,B].By the Eckart- Young-
Mirsky Theorem the resulting(X,AA,AB) is the solutionto the minimization problem. In
addition, if the noisematricesE, and Eg are mutually uncorrelated and haero mean and
identical standard deviations, it is known that tia@imization problem

Above gives us a consistent estim¥tior th eunder lying linear model.

Our study starts frorthe question ohow we can estimat¥ if we do not know the rank or
if the embed ded noismatricesE, andEg do not have identical standard deviatiamsl the
standard deviations are unknawhthe rank is not given to uswe need to decideow many
singular valueso truncatelf the standard deviations of the

Noise are different and we do not know their valugs also need to find an appropriate
weight a so that weighted dataA and (1—a) B contain noise with identical standard

deviations.
In this paper the author propose a method to esitha rank r andthe weight a.We also

present experimental resultsealuatehe proposed method.

1.2.2 Covariance Matrix Estimation

In financial portfolio theory, Mark owitz proposettie Mean-Variance(MV) portfolio problem
to find an optimal portfolio oN stocks satisfying given constrairftae MV portfolio problem
requiresan estimatedovariance matrixz €R"N*Nfor theN stock

returns. It isvell known that the performance of the portfolio is veepsitive to the quality of

the covariance matrigstimatebut a conventional sample covariance matrix is
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RASOULIZADEH
far from a good estimate.
The maindifficulty is that the observed stock retwata contaiioo muchnoise Matrix
reduction can based to reduce the error in the covariance mastixnate .

Supose that we have stock return da@aRN*T of N stocks forT time periods. For

Appropriate principal component analysis (PCA), m@malize each stock return, so that
larger turn valuesor a few stockglo notover whelm the other return values. [Ztle- note
the normalized data with zero-means and identtealdard deviations. Frothe

Singular value decomposition dfwe have

"y T
Z=USV' =UF= " uf,
i=1
whereF=SV",u; is thei- th column ofU, andf] is thei-th row of F. In PCA, the

vectorf; is called tha-th principal componenaffectingthe stock returns, and the vectgrls

called a load which determines how much each stettknis affected by tha-th component.

Previously, many people proposedncatinga few smallest singular values,

expecting that the principal components correspando the smallest singular values are
more significantlycontaminated by noise. However, no & givera clear answeasto how
many principal componenthouldbe truncated. This ia very difficult decision because we
fundamentally do not know how many factgmernthe stock returns.

In Chapter 3,weapplya Tikhonov filtering function to the principal compents, a
monotonically increasing function tiie singular value. With this smooth filtering, we expe
thatthe influence ofmportant principal componenis amplified while potential information

in lessimportantprincipal components Is still preserved. Furtherenae
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Propose a method to determine filtering intendiiyperimentsusing stock return data in
NYSE,AMEX, and NASDA Q from 1958 to 2007, show tltta¢ MV portfolio using Tikhonov

filtered co variance matrix perfornggiite well.

1.2.3 Interior Point Method for Semi definite Programming

The constrainedonvexoptimizationproblemknown assemi definite programminBDP)

Has the following primal and dual problems:

Primal SDPmMin CeX S.tA;*X=hb;fori=1,...,m, XCO,
T HD '
Dual SDPmax b'y s.t. yiAi+Z=C, ZCO0,
i=1

whereC,A;, X, andZ arenxn symmetric matricesC*X=tr (CX) is the trace of the

matrix, andZ CO means thaZ is positive semi definite.

In an interior point method (IPM) for solving théB, we use Newton’s methdd find a
direction (AX,Ay,AZ) leading toward an optimal solutiorand following a central path
defined by the primal and dual constraints and dempntarity equation.To make the
computation of the direction efficient , the Newsaguations are reducedtteelinear system,

MAy=g,

Wherethe Schur complement matrid is determined by the constraint matridgsand the
current point(X,Z), andg is defined by current residualfie IPM repeated lysolvesthis

reduced equation until the it erates atisfies amgoonvergenceolerance.

It takesO (mn3+m?2n?) operations to computd, which is most expensive part
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RASOULIZADEH

For each it eration, so we can expect benefit lucemg its computational cost. In many
applications of SDBuch as the binary code problem, the quadratigmasent problem, and the
traveling sales man probletine matriceg\; andC have identical diagonal block

structure Usingthe block structurdyl can be expanded to

Py’

M= M;j,

i=1
wherepisthe number of diagonal blocks and matvx is associated with thg-th con- straint
block. If some constraint blocks makesignificant or detrimentatontributions tdinding these
archdirection, we may be able to ignaitee correspondingyl; when we comput&l. We call
such block sin active. Similar to the previous problems, it is critical determinewhich
constraint blocks can be ignored while still guéeamgthat the it eration converges the
optimal solution.
The author explain how constrain treduction canapplied to IPM for SDP problems and
propose a basipredictor-correct omlgorithm with constraint reduction. WWiemonstratats
performance bexperimentswvith test problems. The author develops a pesdictor-correct or
algorithm with adaptive criteria to determineactive constraint blocks. We verify the
correctness softhe criteria by proving the globahvergence of the proposed algorithm. Its

polynomial complex it ys alsoverifiedto beO(nIn(9y/9)), where

Qois an initial residual anglis a required tolerance.
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